Computer Science (CS)

For a computer science course to be used as a prerequisite, it must have been passed with a C- or better.

Courses numbered 100 to 299 = lower-division; 300 to 499 = upper-division; 500 to 799 = undergraduate/graduate.

CS 194. Introduction to Digital Design 4 credit hours
3 Classroom hours; 2 Lab hours. An introduction to digital design concepts. Includes number systems, Boolean algebra, Karnaugh maps, combinational circuit design, adders, multiplexers, decoders, sequential circuit design, state diagram, flip-flops, sequence detectors and test different combinational and sequential circuits. Uses CAD tools for circuit simulation. Prerequisite: MATH 111 or equivalent.

CS 210. Introduction to Computer Science 3 credit hours
General education introductory course. Broad introduction to the discipline of computer science. Covers algorithms, computer hardware, operating systems, introduction to high-level language programming, databases, artificial intelligence and other applications, and social issues. Prerequisite: MATH 111.

CS 211. Introduction to Programming 4 credit hours
3 Classroom hours; 2 Lab hours. First course in computer programming in a high-level language. Emphasizes analyzing problems, designing solutions and expressing them in the form of a well-structured program using the procedural aspects of C++. Prerequisite: MATH 111.

CS 238. Assembly Language Programming 3 credit hours
An introduction to basic concepts of computer organization and operation. Studies machine and assembly language programming concepts that illustrate basic principles and techniques. Laboratory exercises given for experience using personal computers. Prerequisite: CS 211.

CS 281L. Non-Credit Internship 0 credit hours
Complements and enhances the student's academic program by providing an opportunity to apply and acquire knowledge in a workplace environment as an intern. Prerequisite: departmental consent.

CS 300. Data Structures 4 credit hours
3 Classroom hours; 2 Lab hours. Introduces basic data structures and covers their implementations using classes in C++. Includes lists, stacks, queues, binary trees and hash tables. Prerequisite: CS 211 with a C- grade or better.

CS 300L. Data Structures Lab I 0 credit hours
General education advanced further study course.

CS 321. Discrete Structures I 3 credit hours
Cross-listed as MATH 321. Provides a mathematical foundation essential to the entire computer science curriculum. Includes propositional and predicate logic, induction, recursion and counting techniques. Prerequisite: MATH 242 with a grade of 2.00 or better.

CS 322. Discrete Structures II 3 credit hours
A continuation of CS 321. Includes relations, graphs, trees, Boolean algebra and automata. Prerequisite: CS 321.

CS 350. Computer Science Workshop 1-5 credit hours
Short-term courses with special computer science emphases. Repeatable for credit. No credit toward the major or minor in computer science. Prerequisite: departmental consent.

CS 394. Introduction to Computer Architecture 3 credit hours
Introduces multilevel approach to computer systems, with an emphasis on micro architecture and instruction set architecture levels. Also introduces techniques to improve performance such as cache memory and instruction level parallelism. Prerequisites: CS 194, 211.

CS 410. Programming Paradigms 3 credit hours
An overview of different programming paradigms, including their philosophies, uses and relative advantages/disadvantages. Covers the procedural/impertive, functional, logic, and object-oriented paradigms. Includes programming assignments in the functional and logic paradigms. Prerequisite: CS 300.

CS 411. Object-Oriented Programming 3 credit hours
Concepts of object-oriented programming. Covers data abstraction, classes and objects, methods, inheritance, polymorphism, dynamically-bound method calls, and data encapsulation. Includes programming assignments in C++. Prerequisite: CS 300.

CS 420. Automata and Formal Languages 3 credit hours
Introduces theory of formal languages. Includes finite automata and regular expressions/languages; push-down automata and context-free grammars/languages; Turing machines. Prerequisite: CS 322 or MATH 322.

CS 444. Introduction to Unix 3 credit hours
Learn the fundamentals of the Unix operating system. Topics include the Unix file system, essential commands and utilities of Unix, and shell programming. Prerequisite: any high-level programming language.

CS 460. Algorithm Design Methodologies 3 credit hours
Advanced course on problem modeling and techniques for designing algorithms for real world problems. Projects emphasize program design and development. Prerequisite: CS 300.

CS 464. Computer Networks 3 credit hours
First course on computer networking. Introduces OSI layers, direct link networks, packet switching, routing, end-to-end protocols and network applications. Prerequisites: IME 254, CS 300.

CS 465. Oracle Development Environment 3 credit hours
Oracle is the most widely used database management system in the world. Course covers basic relational database concepts, the SQL query language, PL/SQL; object creation, including indexes, tables, triggers and stored procedures; Oracle Forms, SQL Loader in the transition of legacy systems, and web-enabled applications. Students work with real-life projects. Prerequisite: CS 211.

CS 481. Cooperative Education in Computer Science 1-3 credit hours
Provides a field placement that integrates theory with a planned and supervised professional experience designed to complement and enhance the student's academic program. Individualized programs must be formulated in consultation with, and approved by, appropriate faculty sponsors. Repeatable for credit. Graded Cr/NCr. Prerequisite: departmental consent.

CS 481A. Cooperative Education 1-3 credit hours
Introduces the student to professional practice by working in industry in an academically-related job and provides a planned professional experience designed to complement and enhance the student's academic program. Individualized programs must be formulated in consultation with, and approved by, appropriate faculty sponsors and cooperative education coordinators. Intended for students who will be working full time on their co-op assignment and need not be enrolled in any other course. Graded Cr/NCr unless student has received permission before enrolling for course to be used as an elective. May be repeated. Prerequisites: junior standing and approval by the appropriate faculty sponsor.

CS 481L. Noncredit Internship 0 credit hours
Complements and enhances the student's academic program by providing an opportunity to apply and acquire knowledge in a workplace environment as an intern. Prerequisite: departmental consent.
CS 481N. Internship 1-3 credit hours
Complements and enhances the student's academic program by
providing an opportunity to apply and acquire knowledge in a
workplace environment as an intern. Graded Cr/NCr. Prerequisite:
departmental consent.

CS 497. Special Topics 1-3 credit hours
1-3 Classroom hours; 0-2 Lab hours. Special topics of current interest in
computer science. Prerequisite: departmental consent.

CS 498. Individual Projects 1-3 credit hours
Repeatable for a total of 6 hours of credit. Graded Cr/NCr. Prerequisite:
departmental consent.

CS 510. Programming Language Concepts 3 credit hours
Theoretical concepts in the design and use of programming languages.
Formal syntax, including Backus Normal Form (BNF), Extended
Backus-Naur Form (EBNF), and syntax diagrams. Semantics, including
declaration, allocation and evaluation, symbol table and runtime
environment; data types and type checking, procedure activation and
parameter passing, modules and abstract data types. Prerequisites:
CS 300, MATH 322.

CS 540. Operating Systems 3 credit hours
Fundamental principles of modern operating systems. CPU
management including processes, threads, scheduling, synchronization,
resource allocation and deadlocks. Memory management including
paging and virtual memory. Storage management and file systems.
Prerequisites: CS 238, 300.

CS 560. Design and Analysis of Algorithms 3 credit hours
Design of various algorithms including several sorting algorithms.
Analysis of their space and time complexities. Data structures include
heaps, hash tables and binary search trees. Prerequisites: CS 300, 322;
STAT 460 or IME 254.

CS 580. Introduction to Software Engineering 3 credit hours
Introduction to the processes, methods and tools used in software
development and maintenance. Topics include software development
life cycle and processes, configuration management, requirements
writing, OOA/D with UML, cohesion and coupling, and unit testing.
Prerequisite: CS 411.

CS 594. Microprocessor-Based System Design 4 credit hours
3 Classroom hours; 2 Lab hours. Presents knowledge and skills required
to design and program microprocessor-based systems. Introduces
vendor-supplied special-purpose chips such as interrupt controllers and
programmable input/output devices. Laboratory activities give hands-on
experience. Prerequisites: CS 238, 394.

CS 644. Advanced Unix Programming 3 credit hours
Improves skills in C programming under the Unix environment.
Covers file I/O, both buffered and unbuffered, working with the Unix
file system, concurrent programming with multiple processes and
process control. Also includes the use of signals and concepts of
interprocess communication with pipes and FIFOs. Students must have
prior knowledge of C language and its use in structures and pointers.
Prerequisite: CS 540.

CS 655. Information Delivery on the Internet 3 credit hours
Explores the capabilities of providing information on the World Wide
Web. Information is typically provided through some sort of website
that incorporates static text and the dynamic capabilities of the Web.
Learn how to create an interactive website through the use of CGI and
Java programming and how to interconnect a website to databases and
generate images on the fly. Java portion covers a wide range of Java
language and the Applet interface and utilities. Prerequisite: CS 300.

CS 665. Introduction to Database Systems 3 credit hours
Fundamental aspects of relational database systems, conceptual
database design and entity-relationship modeling; the relational data
model and its foundations, relational languages and SQL, functional
dependencies and logical database design; views, constraints and
triggers. Course includes a group project involving the design
and implementation of a relational database and embedded SQL
programming. Prerequisites: CS 300, MATH 322.

CS 697. Selected Topics 1-3 credit hours
1-3 Classroom hours; 0-2 Lab hours. Selected topics of current interest. Repeatable for credit with departmental consent. Prerequisite:
departmental consent.

CS 697AN. Hardware-Based Computer Security 3 credit hours
Intended for seniors and graduate students who want to study
and explore the role of hardware in improving computer security.
Topics covered may include (1) elements of computer security, (2)
secure coprocessor, (3) secure bootstrap loading, (4) secure memory
management, (5) hardware-based authentication, (6) hardware-based
virus detection, (7) hardware as a cybersecurity solution, (8) security
engineering, (9) managing the development of secure systems, and (10)
system evaluation and assurance. Prerequisites: CS 394 and a desire to
learn more about both computer architecture and security.

CS 715. Compiler Construction 3 credit hours
First compiler course for students with a good background in
programming languages and sufficient programming experience.
Covers compiler design, lexical analysis, parsing techniques, symbol
tables, scope analysis, type checking and conversion; run-time
organization, code generation and optimization. Project-oriented
course involves implementation of a full compiler for a simplified but
nontrivial procedural language. Prerequisites: CS 238, 510.

CS 720. Theoretical Foundations of Computer Science 3 credit hours
Provides an advanced level introduction to the theoretical bases of
computer science. Computer science theory includes the various models
of finite state machines, both deterministic and nondeterministic, and
courses of decidability, computability and formal language theory.
Prerequisite: CS 322.

CS 721. Advanced Algorithms and Analysis 3 credit hours
Topics include height-balanced trees, graph algorithms, greedy
algorithms, dynamic programming, hard problems and approximation
algorithms. Prerequisite: CS 560.

CS 731. Mathematical Foundations for Computer Networking 3 credit hours
Introductory class on applying various mathematical tools to the field of
computer networks and related areas. Divided into three phases: phase
one covers the fundamentals of probability, statistics and linear algebra
required for understanding the core topics to follow. Phase two covers
the core topics of optimization and queueing theory. Phase three briefly
covers the advanced topics of game theory and information theory. The
deal of coverage is sufficient to allow students to read and understand
research papers in computer networking and related areas that use these
standard techniques. Ideas are taught through intuition, mathematically
formalization and detailed numerical examples. Prerequisite:

CS 736. Data Communication Networks 3 credit hours
Presents a quantitative performance evaluation of telecommunication
networks and systems. Includes fundamental digital communications
system review; packet communications, queuing theory, OSI, s.25 and
SNA layered architectures, stop-and-wait protocol, go-back-N protocol,
and high-level data link layer; network layer flow and congestion
control, routing, polling and random access, local area networks (LAN);
integrated services digital networks (ISDN), and broadband networks.
Prerequisites: CS 300, IME 254.

CS 737. Wireless Networking 3 credit hours
Covers topics ranging from physical layer to application layer in the
wireless and mobile networking fields. Explores physical layer
issues of wireless communications, wireless cellular telephony, ad-
hoc networks, mobile IP and multicast, wireless LAN (IEEE 802.11),
security, Bluetooth and WAP, etc. Imparts general knowledge about
wireless communication technologies and ongoing research activities.
Prerequisite: CS 736.

CS 738. Embedded Systems Programming 3 credit hours
Studies the requirements and design of embedded software systems.
Application of the C programming language in the implementation
of embedded systems emphasizing real-time operating systems,
interfacing to assembly and high-level languages, control of external
devices, task control and interrupt processing. Prerequisite: CS 594.

CS 750. Workshop in Computer Science 1-5 credit hours
Short-term courses with special focus on introducing computer science
concepts. Repeatable for credit. Prerequisite: departmental consent.

CS 764. Routing and Switching I 4 credit hours
3 Classroom hours; 2 Lab hours. An introductory course which
studies different hardware technologies, like Ethernet and token ring.
Discusses VLSM. Introduces different routing protocols. Includes
hands-on experience in the CS department's routing and switching lab.
Prerequisite: CS 464 or 736.

CS 766. Information Assurance and Security 3 credit hours
Provides basic concepts in information assurance and security including
encryption, digital certificates, security in networks, operating systems
and databases. Topics in intrusion detection, legal and ethical issues in
security administration are also discussed. Prerequisite: CS 464 or 736
or 764.

CS 767. Foundations of Network Security 3 credit hours
Presents fundamental concepts in cryptography and network security,
and discusses applications and protocols for providing confidentiality,
authentication, integrity, and availability in networking services and
systems. Includes review of symmetric-key cryptographic schemes
such as DES and AES, public-key cryptographic schemes such as
RSA and Diffie-Hellman key exchange protocol, cryptographic hash
functions such as SHA, message authentication codes such as HMAX
digital signature schemes such as El-Gamal and DSS, kerberos and
user authentication protocols, transport layer security and TLS, IP layer
security and IPSec, and wireless security principles. CS 766 is highly
preferred, but not required. Prerequisite: CS 464 or 736.

CS 771. Artificial Intelligence 3 credit hours
Introduction to some of the fundamental concepts and techniques
underlying artificial intelligence. Topics covered include state spaces,
heuristic search, game playing, knowledge representation, and
resolution in propositional and first-order predicate logic. Prerequisites:
CS 300, MATH 322.

CS 780. Advanced Software Engineering 3 credit hours
Discusses advanced topics in software development, maintenance and
evolution. Topics include software design patterns, architecture and
architectural styles, frameworks, refactorings, and static and dynamic
analyses. Includes a group project. Prerequisite: CS 580.

CS 781. Cooperative Education in Computer Science 1-3 credit
hours
Practical experience in a professional environment to complement and
enhance the student's academic program. For master's level CS students.
Repeatable, but may not be used to satisfy degree requirements. Graded
Csr/NCr. Prerequisites: departmental consent and graduate GPA of 3.000
or above.

CS 794. Multicore Architectures and Programming 3 credit hours
3 Classroom hours. Introduces state-of-the-art concepts and techniques
to design and program modern computer systems. Particular attention
is given to the following areas: multicore architecture, parallel
programming and advanced research. Labs give hands-on experience.
Prerequisites: CS 211, 394.

CS 797. Special Topics in Computer Science 1-4 credit hours
New or special courses presented on sufficient demand. Repeatable for
credit. Prerequisite: departmental consent.

CS 798. Individual Projects 1-3 credit hours
Allows beginning graduate students and mature undergraduate students
to pursue individual projects of current interest in computer science.
Graded S/U. Prerequisite: departmental consent.